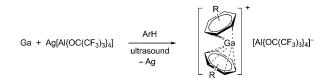


Gallium(I) Chemistry

DOI: 10.1002/anie.201001102

At Last: A Stable Univalent Gallium Cation**

Rudolf J. Wehmschulte*


arene ligands · coordination chemistry · gallium · low-valent compounds · main group elements

> With the exception of thallium and the non-metal boron, the +1 oxidation state of the other Group 13 elements aluminum, gallium, and indium is thermodynamically unstable in aqueous solutions, leading to disproportionation into the metal and the +3 ions.^[1] Solid indium(I) halides are stable under inert conditions, but disproportionate upon attempted dissolution into polar solvents.^[2] In 2004, the synthesis of a stable indium(I) triflate was reported from the reaction of [Cp*In] (Cp* = C_5Me_5) with triflic acid at room temperature in toluene solution.[3] This compound is readily soluble in aromatics and ethers, forms complexes $[L_n In]^+$ with ligands such as (iPrO)₃P, and is resistant to disproportionation. The analogous reaction with [Cp*Ga] afforded mixtures of gallium(I) and gallium(III) compounds.[4] Indium(II) and gallium(II) halides M_2X_4 consist of the ion pair $M^+[MX_4]^-$. In aromatic solvents, the M^+ cations are solvated by η^6 coordinated arenes, but attempts to exchange the [MX₄] anion have been unsuccessful to date. [1,2] The compound "GaI", which is actually a mixture of subvalent gallium iodides, is obtained in the reaction of gallium metal with one half of an equivalent of iodine, with Ga₂[Ga₂I₆] being the main product.^[5] Solutions of metastable gallium(I) halides can be prepared by co-condensation of the high-temperature species GaX in a toluene/donor matrix at -196 °C, followed by slow dissolution at -78 °C. This method allowed for the isolation of crystalline, oligomeric, solvated gallium(I) halides (XGaL), (X = halide, donor L = ether, amine, phosphine) and numerous metalloid gallium clusters. Unfortunately, this route also requires a specialized reactor, carefully fine-tuned reaction conditions, and very well-trained personnel.[6]

> This research into gallium compounds in low oxidation states has led to numerous interesting advances. The isolation structural characterization of the compound Na₂[Ar*GaGaAr*] $(Ar^* = 2,6-Trip_2C_6H_3,$ Trip = 2,4,6iPr₃C₆H₂) improved our understanding of multiple bonding between heavier elements greatly.[7] Neutral and anionic gallium(I) compounds have been investigated as ligands for metal complexes, [8] and Schnöckel and co-workers have

pioneered the synthesis of a wide range of gallium clusters that may be viewed as intermediates in disproportionation reactions leading to gallium metal. [6] Nevertheless, it could be argued that this progress may have been slowed owing to inadequate access to suitable starting materials.

Recently, Slattery et al. have reported a simple route to stable, crystalline, univalent gallium salts.^[9] Metallic gallium is oxidized by Ag[Al{OC(CF₃)₃}₄] in toluene or fluorobenzenes using sonication as the energy source (Scheme 1). The

Scheme 1. Synthesis of univalent gallium salts. R = Me, F.

resulting solutions containing the [(ArH)₂Ga]⁺ cation are not subject to disproportionation reactions at room temperature. The key for this feat appears to be the use of the weakly coordinating anion $[Al{OC(CF_3)_3}_4]^-$.

The crystal structures of these compounds show that gallium(I) is in a bent sandwich environment involving two η^6 coordinated arenes, similar to Schmidbaur's [(ArH)₂Ga]-[MX₄] (ArH = benzene, toluene, mesitylene).^[10] The main difference is the absence of the strong cation---anion interactions in the former compounds that are so common in the latter examples (Scheme 2). The authors propose that, along with the absence of the reactive [MX₄]⁻ anion, the lack of the halide bridges contributes to the stability of their compounds by shutting down a decomposition pathway.

The reaction of gallium with $Ag[Al\{OC(CF_3)_3]_4]$ in o-C₆H₄F₂ led to partial decomposition of the anion to afford the more stable $[\{(CF_3)_3CO\}_3Al-F-Al\{OC(CF_3)_3\}_3]^-$ anion and

Scheme 2. Sketch of the halide bridges in [(ArH)₂Ga][Al{OC(CF₃)₃}₄] and [(ArH)2Ga][MX4].

[*] Prof. Dr. R. J. Wehmschulte

Department of Chemistry, Florida Institute of Technology 150 W. University Blvd., Melbourne, FL 32901 (USA)

Fax: (+1) 321-674-8951 E-mail: rwehmsch@fit.edu

Homepage: http://cos.fit.edu/chemistry/faculty/wehmschulte/

[**] Financial support was provided by the National Science Foundation (CHE 0718446).

presumably GaF as a result of the strong Ga–F bond and a high Lewis acidity and fluorine affinity of the gallium(I) cation. Such decomposition reactions may be avoided by the application of other weakly coordinating anions, such as $[B(C_6F_5)_4]^-$, $[B\{C_6H_3(CF_3)_2-3,5\}_4]^-$, or $[CH_6B_{11}X_6]^-$ (X = Cl, Br, I).

The [(ArH)₂Ga]⁺ compounds allow for the first time the exploration of the coordination chemistry of the gallium(I) cation. Coordination of triphenylphosphine gave the [(Ph₃P)₃Ga]⁺ complex; the crystal structure has a trigonal pyramidal coordination environment at the gallium center, which is indicative of a stereochemically active lone pair. Quantum chemical calculations of the model compound [(PH₃)₃Ga]⁺ reveal that the HOMO is the lone pair, with mostly s character. It will be interesting to see if this early result can be extended to other ligands, such as ethers, thioethers, amines, carbenes, and their polydentate analogues. Are such complexes, for example, [(diamine)Ga]⁺ (Scheme 3), still nucleophilic in similar fashion to [Cp*Ga], [(nacnac)Ga], or the NHC analogue [{N(Ar)CH}₂Ga]⁻?

Scheme 3. Nucleophilic gallium(I) compounds.

Other areas to explore include the use of $[(ArH)_2Ga]^+$ cations as well-defined sources for gallium(I) compounds, such as RGa (R = alkyl, aryl), $\{(Me_3Si)_2NGa\}_n$, or even well-defined donor-stabilized gallium(I)halides L_nGaX (L = phosphine, amine, thioether; X = halide). Careful thermal or photochemical decomposition experiments of these galli-

um(I) compounds may lead to novel approaches to metalloid clusters. It is also quite possible that these new gallium(I) species might find applications in organic or materials chemistry.

The newly developed [(ArH)₂Ga]⁺ synthesis is straightforward and should be reproducible in every organometallic chemistry laboratory, although access to a high-wattage ultrasonic bath is required. Similarly, the preparation of Ag[Al{OC(CF₃)₃}₄] can easily be accomplished.^[11] Overall, the contribution of Slattery et al. has provided access to well-defined gallium(I) salts and should invigorate this area of chemistry.

Received: February 23, 2010 Published online: June 8, 2010

- [1] A. J. Downs, Chemistry of Aluminium, Gallium, Indium and Thallium, 1st ed., Blackie, London, 1993.
- [2] J. A. J. Pardoe, A. J. Downs, Chem. Rev. 2007, 107, 2-45.
- [3] C. L. B. Macdonald, A. M. Corrente, C. G. Andrews, A. Taylor, B. D. Ellis, *Chem. Commun.* 2004, 250–251.
- [4] G. Linti, A. Seifert, Z. Anorg. Allg. Chem. 2008, 634, 1312-1320.
- [5] R. J. Baker, C. Jones, *Dalton Trans.* **2005**, 1341–1348.
- [6] H. Schnöckel, Dalton Trans. 2008, 4344-4362.
- [7] a) J. Su, X.-W. Li, R. C. Crittendon, G. H. Robinson, J. Am. Chem. Soc. 1997, 119, 5471-5472; b) E. Rivard, P. P. Power, Inorg. Chem. 2007, 46, 10047-10064; c) Y. Wang, G. H. Robinson, Chem. Commun. 2009, 5201-5213.
- [8] R. J. Baker, C. Jones, Coord. Chem. Rev. 2005, 249, 1857-1869.
- [9] J. M. Slattery, A. Higelin, T. Bayer, I. Krossing, Angew. Chem. 2010, 122, 3297–3301; Angew. Chem. Int. Ed. 2010, 49, 3228–3231.
- [10] H. Schmidbaur, Angew. Chem. 1985, 97, 893-904; Angew. Chem. Int. Ed. Engl. 1985, 24, 893-904.
- [11] a) I. Krossing, Chem. Eur. J. 2001, 7, 490-502; b) Y. Li, F. E. Kühn, J. Organomet. Chem. 2008, 693, 2465-2467.